Калькулятор расчета емкости рабочего и пускового конденсатора

Пояснения к расчету

Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:

Схема подключения рабочего и пускового конденсатора при разных способах подключения обмотокРасчетные зависимости
Ср = 2800*I/U; I = P/(√3*U*η*cosϕ) Ср – емкость рабочего конденсатора
Ср = 4800*I/U; I = P/(√3*U*η*cosϕ) Ср – емкость рабочего конденсатора
Сп = 2,5*Ср, где Сп – емкость пускового конденсатора при любом способе подключения
Расшифровка обозначений: Ср – емкость рабочего конденсатора, мкФ Сп – емкость пускового конденсатора, мкФ I – ток, А U – напряжение в сети, В η – КПД двигателя в %, деленных на 100 cosϕ – коэффициент мощности

Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:

  • если расчетное значение точно попало в существующий номинал, то в этом случае повезло – берете именно такой.
  • если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.

Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.

Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65Электролитические неполярные конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В400; 450; 630220-275; 300; 450
Номинальный ряд, мкФ1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 1505; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.

Процесс пуска электропривода

Магнитное поле способствует пуску электродвигателя. Оно буквально заставляет ротор начать вращение.

Само магнитное поле возникает благодаря работе главной и дополнительной обмотки. Дополнительная, в свою очередь, меньше, что видно даже невооруженным глазом. Она подключена к рабочей с помощью конденсатора, катушки индуктивности или активного резистора. 

В случае, когда двигатель маломощный, пусковая фаза является замкнутой. Для пуска такого электромотора подключение электричества к пусковой обмотке допустимо только на некоторое время. Максимум – три секунды. За это отвечает специальная кнопка, расположенная на корпусе агрегата. Она называется пусковой и вставлена в устройство пуска.

Тепловое реле защиты двигателя

При нажатии на кнопку запуска электричество начинает подаваться на обе катушки в одно и то же время. Электродвигатель при этом запускается в роли двухфазной машины. Но уже через 2-3 секунды мотор полностью набирает свою нормальную скорость. Кнопку теперь нужно отпустить. Электроэнергия больше не подается на вспомогательную обмотку, соответственно, она перестает работать. А вот рабочая продолжает питаться. Агрегат переходит в режим однофазной работы. Это – основной принцип работы всех однофазных электромашин.

ВАЖНО! Если передержать кнопку запуска однофазного электродвигателя, обмотка перегреется и мотор потеряет работоспособность. Пуская катушка рассчитана лишь на работу в течение трех секунд

Для избежания перегрева и опасных аварийных ситуаций, которые могут за ним последовать, в корпус однофазной машины обязательно устанавливают тепловое реле и центробежный выключатель. Последний работает полностью автоматизировано: когда нужная скорость вращения набрана, устройство само отключает подачу тока на пусковую обмотку.

Центробежный выключатель

Отметим также тот факт, что во тока пуска однофазной машины выше, чем рабочий. Когда стадия запуска завершается, снижается и величина тока (становится рабочей).

Подбор конденсатора для трехфазного двигателя

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Типы подключений машины

Однофазную асинхронную машину можно подключить к сети двумя способами:

  • с помощью пусковой обмотки;
  • с помощью рабочего конденсатора.

В цепях маломощных однофазных приводов на 220 В, которые включаются с помощью дополнительной обмотки, есть конденсаторы, которые включаются при запуске мотора. Когда разгон ротора завершен, Пусковая катушка, как описано в предыдущем разделе, отключается. 

В том случае, когда к двигателю подключен рабочий конденсатор, вспомогательная катушка продолжает работу на протяжении всего времени работы привода. Ее происходит благодаря работе такой катушки через конденсатор.

Один и тот же электропривод можно использовать в разных устройствах. Можно снять двигатель с одного прибора и поставить в другой. Подключить его можно с помощью трех разным схем:

  1. Временная подача электроэнергии на вспомогательную катушку через конденсатор.
  2. Временная подача электроэнергии на вспомогательную катушку через резистор (конденсатор отсутствует).
  3. Постоянная подача электричества на вспомогательную и основную катушки одновременно. Подача происходит через конденсатор. 

Если использовать в пусковой цепи резистор, величина активного сопротивления обмотки будет больше. Сдвиг фаз произойдет и его вполне хватит для того, чтобы заставить ротор вращаться. 

Возможно также использование вспомогательной обмотки с более высоким сопротивлением и меньшей индуктивностью. Для полного соответствия обмотка должна обладать меньшим количеством витков и более тонким проводом. 

Понятие конденсаторного пуска подразумевает, что конденсатор подключен к вспомогательной катушке, а подача электричества временная.

Чтобы значение пускового момента было максимальным, круговое магнитное поле статора начать вращение. Это требует перпендикулярного (относительно друг друга) положения обмоток. Резистор не даст такого сдвига.

В этой ситуации поможет конденсатор с правильно подобранной емкостью. Если все подходит, то катушки будут сдвинуты на угол в 90 градусов относительно друг друга.

Рассчитываем емкость конденсатора

Основная задача стабилизатора заключается в выполнении роли емкостного наполнителя энергии, нужной выпрямителям фильтров этого стабилизатора. С их помощью также происходит передача сигнала между усилителями. Чтобы запустить асинхронную однофазную машину переменного тока и обеспечить ее продолжительную работу тоже используют конденсаторы. Определив емкость определенного конденсатора можно предсказать, какое время будет продолжаться работа двигателя. 

Основной и главный параметр такого устройства – его емкость. Между этим параметром и площадью активного подключения, изолированного диэлектриком, существует некая зависимость. Диэлектрик почти невозможно увидеть невооруженным глазом, так как слой подобной изоляции состоит их из небольшого количества атомов, которые формируют пленку. 

По сути, главное назначение конденсатора – накопление, хранение и передача определенного количество энергии. А зачем так заморачиваться, спросите вы? Можно ведь просто подключить однофазную машину к источнику питания. Не тут то было. Подключая электропривод в сеть без посредника в виде конденсатора, вы рискуете работоспособностью агрегата. Он может просто сгореть.

Да и чтобы успешно включить трехфазную машину в однофазную не обойтись без устройства, которое поможет смещению фазы на 90 градусов на третьем выводе. 

Помимо всего вышесказанного, конденсатор может выполнять функцию индуктивной катушки. Скачки переменного тока, протекающего через него, успешно нивелируются благодаря тому, что перед началом работы, на пластинах конденсатора равномерно копятся заряды и только потом передаются устройству, которое является принимающим. 

Конденсатор может быть одним из трех видов:

  • электролитическим;
  • неполярным;
  • полярным.

Устройство и предназначение конденсаторов

Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.

Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд)

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).

Устройство детали

Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.

Лейденские банки, соединённые параллельно

Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.

Обозначение на схемах

Калькулятор расчета емкости рабочего и пускового конденсатора

На чтение: 3 минуты Нет времени?

Подключая асинхронный двигатель в сеть с одной фазой (220 в), появляется необходимость обеспечения сдвига фаз для имитации трехфазной сети. В противном случае электромотор просто не сможет функционировать из-за отсутствия вращения магнитных полей. В этом случае возможно применение конденсаторов, имеющих возможность создать нужный перекос, тем самым переводя синусоидальные колебания однофазного тока в некое подобие трехфазного. Проблемой становится правильный подбор емкости конденсаторов. Для этого необходимо произвести расчеты с максимальной точностью.

Представленный ниже онлайн-калькулятор расчета емкости поможет выполнить все действия довольно просто и быстро, не допустив ошибок в вычислениях.

Асинхронный электродвигатель – без дополнительного оборудования от 220 в его не запустить

Высчитывая необходимые показатели самостоятельно следует воспользоваться таблицей.

Способ подключения двигателяФормулы, необходимые для производства вычислений
«Звезда»
  • Cр=2800*I/U; I=P/(√3*U*η*cosϕ)
  • Cр=(2800/√3)*P/(U²*η*cosϕ)
«Треугольник»Cр=(4800/√3)*P/(U²*η*cosϕ)

Расшифровать обозначения можно следующим образом:

  • Cр – емкости рабочих элементов (мкФ);
  • Cп – емкости пусковых элементов;
  • I – величины токов (А);
  • U – величины напряжений (В);
  • η – Коэффициент полезного действия электромотора в процентах, разделенных на 100;
  • cosϕ – коэффициент мощности.

На этой табличке есть все необходимые данные для онлайн калькулятора

После ввода всех необходимых данных в соответствующие поля нужно нажать кнопку «рассчитать…». Полученные показатели используются для подбора емкости. Единственное неудобство – редко случается найти именно элемент с рассчитанными параметрами. В этом случае берется ближайшая емкость, стоящая ниже по показателю. Если же взять более мощный элемент, возможен перегрев обмоток электродвигателя вследствие возрастания рабочего тока, что неизбежно приведет к повреждению изоляции и опасности межвиткового замыкания. В редких случаях совпадения показателей, естественно, лучше выбрать именно такой.

Номинальное напряжение конденсатора должно быть минимум в полтора раза выше сетевого. Причина этому – резкое возрастание этого показателя в пусковой момент. При подключении к однофазной сети номинал должен составлять 360 в. Если подключается фазное напряжение по двум проводам – 400-450 в. Но это минимальный предел. На самом деле профессионалы советуют брать еще выше – никаких проблем это не создаст.

Схема подключения асинхронного двигателя на 220 В

Ниже представлена таблица номиналов рабочего и пускового конденсатора. Для примеров – серия CBB60 (полипропиленовый пленочный, основное назначение которого – схемы подключения асинхронного двигателя) и серия CBB65, помещенная в алюминиевые корпуса.

Для пуска применяются неполярные конденсаторы на основе электролита (CD60). Как рабочие они неприменимы. Их проблема в том, что длительная нагрузка существенно снижает их срок службы. Хотя в качестве пусковых допускается и CBB60 (CBB65), но они более габаритны при тех же емкостях. Ниже представлена таблица рекомендованных для подобной эксплуатации конденсаторов, способных работать с электродвигателями.

…а так подключение выглядит «в живую»

Полипропиленовые пленочные CBB60 (российский аналог К78-17) и CBB65 Электролитические неполярные CD60
Номинал напряжения (в)400; 450; 630220—275; 300; 450
Емкость (мкФ)1,5; 2,0;2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 1505,0; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Бывает, что элементов с необходимой емкостью нет. Тогда можно «спарить» два. Стоит понимать, что параллельное соединение и последовательное дадут совершенно различные показатели. Наиболее оптимальным будет последовательное соединение. А для расчета суммарной емкости предлагаем Вам использовать другой онлайн калькулятор, который сэкономит время и избавит от лишних расчетов.

{SOURCE}

По какому принципу работает двигатель

С помощью влияния переменного электрического тока в статоре возникает магнитное поле. Его можно рассматривать как два отдельных поля, амплитуда и частота которых одинакова, а вот направления разные.

Два магнитных поля, которые возникли в статоре двигателя, воздействует на ротор так, что тот начинает вращаться и приводит двигатель в работу. Вращение начинается благодаря тому, что поля статора имеют разные направления. Если пусковой механизм отсутствует, то есть нет вспомогательной обмотки, ротор никогда не начнет движение.

Если ротор начал работу, вращаясь в одну из сторон, направление он может поменять только в случае вмешательства извне.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

https://youtube.com/watch?v=Ne4ccjbUY9M

В трехфазном двигателе обмотки и так размещены под углами 120 ° . Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить пусковой момент вращения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Особенности трёхфазного двигателя

Асинхронные электродвигатели с тремя обмотками на статоре преобладают в различных отраслях сельского хозяйства. Их применяют для привода устройств вентиляции, уборки навоза, приготовления кормов, подачи воды. Популярность таких моторов обусловлена рядом преимуществ:

  • простота строения;
  • надёжность в работе;
  • при подключении в нормальном режиме не используются дорогие и дефицитные устройства;
  • количество технических обслуживаний невелико.

Подключить трехфазный двигатель на 220 можно пытаться, зная различия схем соединения обмоток. Количество фаз, на которое рассчитан двигатель, можно определить по числу зажимов в его клеммной коробке: у трёхфазного в ней будет 6 выводов, а у однофазного два или четыре. Обмотки мотора с тремя фазами соединяются по установленной схеме, называемой «звездой» или «треугольником». Каждая из них имеет свои преимущества и недостатки. При соединении в звезду концы обмоток соединены. В клеммной коробке эта схема соединения будет отображена использованием двух перемычек между зажимами с обозначениями «С6», «С4», «С5».

Если же обмотки двигателя соединяются в треугольник, то к каждому концу присоединяется начало. В клеммной коробке будут использованы три перемычки, которые будут соединять зажимы «С1» и «С6», «С2» и «С4», «С3» и «С5». Трехфазные двигатели рассчитаны на рабочее напряжение в 380 В. Но не всегда в быту имеется такое напряжение. Поэтому возникает проблема: как осуществить подключение электродвигателя через конденсатор к бытовой сети?

Наиболее приемлемый и общедоступный способ — применение фазосдвигающего конденсатора. В таком режиме может быть достигнута 50–60%-ная мощность от номинальной. Отметим, что не все асинхронные двигатели одинаково хорошо будут работать при включении в однофазную сеть. Наиболее приспособлены к данным условиям двигатели, имеющие короткозамкнутый ротор, выполненный в виде двойной клетки.

Оптимальная работа электродвигателя достигается лишь в случае, если емкость конденсатора будет изменяться по мере увеличения скорости вращения. Практически очень сложно осуществить это требование. В связи с этим принято двухступенчатое управление двигателем. Пуск осуществляется с помощью двух конденсаторов (пускового — Сп и рабочего — Ср). Затем, при наборе нужной скорости вращения, пусковой нужно отключить. Основная функция его состоит в увеличении пускового момента.

Будет интересно Несколько фактов об электролитических конденсаторах

Расчет конденсатора для электродвигателя можно произвести таким образом. Расчетная формула имеет вид: Ср = К*(Iн/U). Здесь приняты следующие обозначения:

  • сила тока (номинальная) — Iн (А);
  • напряжение (номинальное) — U (В);

К — безразмерный коэффициент.

Значение К определяется тем, как включен двигатель. К = 2800, когда двигатель включен по схеме «звезда». Если же он включен по схеме «треугольник», то значение К = 4800.

Конденсаторы для запуска электродвигателя рекомендуется выбрать из бумажных, в частности:

  • бумажных, герметичных, в металлическом корпусе, маркировка КБГ-МН
  • бумажных, термостойких, условное обозначение БГТ;
  • металлобумажных, частотных, МБГЧ.

В случае необходимости поменять направление вращения двигателя достаточно поменять местами провода, подключенные к зажимам конденсатора. Запуск электродвигателя с помощью конденсатора лучше осуществлять по схеме «треугольник». В этом случае можно добиться максимальной выходной мощности (до 70 %). В качестве примера рассмотрим двигатель АО2. Его номинальная мощность 2,2 кВт, частота вращения — 1420 об/мин. Для его запуска в режиме холостого хода (или при наличии нагрузки) потребуются 2 конденсатора: первый емкостью 230 мкФ (рабочий) и второй емкостью 150 мкФ (пусковой).

Пусковые конденсаторы большой емкости.

Подключение электродвигателя 380В на 220В

Подключение электродвигателя 380В на 220В выполняется через конденсатор

Для такого подключения необходимо использовать бумажные (или пусковые) конденсаторы, при этом ВАЖНО чтобы номинальное напряжение конденсатора было больше либо равно напряжению сети. Могут применяться конденсаторы следующих марок (типов):. МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др

МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др.

Емкость конденсатора можно определить по формулам приведенным ниже, либо с помощью онлайн расчета емкости.

Первое, что необходимо сделать — это правильно соединить выводы обмоток электродвигателя. Как уже известно из статьи: схемы соединения обмоток электродвигателя обмотки электродвигателя можно соединить по схеме «звезда» (обозначается — Y) или по схеме «треугольник» (обозначается — Δ), при этом, как правило для подключения электродвигателя на 220В применяется схема «треугольник» , что бы определиться со схемой соединения обмоток необходимо посмотреть паспортные данные электродвигателя на прикрепленном к нему шильдике:

Запись: «Δ/ Y 220/380V» обозначает, что для подключения данного электродвигателя на 220В необходимо соединить его обмотки по схеме «треугольник», а для подключения на 380В — по схеме «звезда», как это сделать читайте здесь.

Второе, с чем необходимо определиться — это как будет производиться запуск электродвигателя, под нагрузкой (когда уже в момент запуска электродвигателя к его валу приложена нагрузка и он не может свободно вращаться) либо без нагрузки (когда вал электродвигателя в момент запуска свободно вращается, например наждак, вентилятор, циркулярная пила и т.п.).

При запуске двигателя без нагрузки применяется 1 конденсатор который называется рабочим, а при необходимости запуска двигателя под нагрузкой в схеме, помимо рабочего, дополнительно применяется 2-ой конденсатор который называется пусковым, он включается только в момент запуска.

Разберем схемы подключения электродвигателя 380 на 220 для обоих случаев:

1) Подключение электродвигателя через конденсатор по схеме «треугольник», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «треугольником» рассчитывается по формуле:

Cр=4800 * IнUс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В схеме для включения электродвигателя применяется однополюсный автоматический выключатель, однако его использование необязательно, можно включать электродвигатель напрямую в сеть через розетку используя обычную штепсельную вилку или, например, включать его через обычный выключатель освещения.

2) Подключение электродвигателя через конденсатор по схеме «звезда», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «звездой» рассчитывается по формуле:

Cр=2800 * IнUс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В случае если запуск двигателя 380 на 220 Вольт происходит под нагрузкой, в схеме дополнительно должен применяться пусковой конденсатор иначе силы момента на валу электродвигателя не хватит для его раскрутки и двигатель не сможет запуститься.

Пусковой конденсатор подключается параллельно рабочему и должен включаться только в момент запуска двигателя, после того как двигатель наберет обороты его необходимо отключать.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего.

Cп= (2,5…3) * Cр; мкф

При данной схеме для запуска электродвигателя необходимо нажать и держать кнопку SB, после чего подать напряжение включив автоматический выключатель, как только двигатель запустится кнопку SB необходимо отпустить. В качестве кнопки так же можно использовать обычный выключатель.

Однако лучшим вариантом для подключения электродвигателя 380 на 220 является использование ПНВС-10 (пускатель нажимной с пусковым контактом):

Кнопки «пуск» в этих пускателя имеют 2 контакта один из них при отпускании кнопки «пуск» размыкается отключая пусковой конденсатор, а второй остается замкнутым и через него подается напряжение на электродвигатель через рабочий конденсатор, отключение производится кнопкой «стоп».

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Дифференцирующая RC цепь

Ао «чебоксарский электроаппаратный завод», чебоксары

Еще одно ругательное слово, которое пришло с математики – дифференцирующий. Башка начинает сразу же болеть от одного только их произношения. Но, куда деваться? Электроника и математика неразлучные друзья.

А вот и сама дифференциальная цепочка

В схеме мы только переставили резистор и конденсатор местами

Ну а теперь проведем также все опыты, как мы делали с интегрирующей цепью. Для начала подаем на вход дифференциальной цепи низкочастотный двухполярный меандр с частотой в 1,5 Герца и с размахом в 5 Вольт. Желтый сигнал – это сигнал с генератора частоты, красный – с выхода дифференциальной цепочки:

Как вы видите, конденсатор успевает почти полностью разрядится, поэтому у нас получилась вот такая красивая осциллограмма.

Давайте увеличим частоту до 10 Герц

Как видите, конденсатор не успевает разрядиться, как уже приходит новый импульс.

Сигнал в 100 Герц сделал кривую разряда еще менее заметной.

Ну и добавим частоту до 1 Килогерца

Какой на входе, такой и на выходе

Но и на этом тоже ништяки не заканчиваются.

Давайте я подниму входной сигнал над “уровнем моря”, то есть выведу его в положительную часть полностью. Смотрим, что получается на выходе (красный сигнал)

Ничего себе, красный сигнал по форме и по положению остался таким же, посмотрите – в нем нет постоянной составляющей, как в желтом сигнале, который мы подавали из нашего генератора функций.

Могу даже желтый сигнал вывести в отрицательную область, но на выходе мы все равно получим переменную составляющую сигнала без всяких хлопот:

Да и вообще пусть сигнал будет с небольшой отрицательной постоянной составляющей, все равно на выходе мы получим переменную составляющую:

Все то же самое касается и любых других сигналов:

В результате опытов мы видим, что основная функция дифференциальной цепи – это выделение переменной составляющей из сигнала, который содержит в себе как переменную, так и постоянную составляющую. Иными словами – выделение переменного тока из сигнала, который состоит из суммы переменного тока и постоянного тока.

Почему так происходит? Давайте разберемся. Рассмотрим нашу дифференциальную цепь:

Если внимательно рассмотреть эту схему, то мы можем увидеть тот же самый делитель напряжения, как и в интегрирующей цепи. Конденсатор – частотно-зависимый радиоэлемент. Итак, если подать сигнал с частотой в 0 Герц (постоянный ток), то у нас конденсатор тупо зарядится и потом вообще перестанет пропускать через себя ток. Цепь будет в обрыве. Но если мы будем подавать переменный ток, то и через конденсатор он тоже начнет проходить. Чем больше частота – тем меньше сопротивление конденсатора. Следовательно, весь переменный сигнал будет падать на резисторе, с которого мы как раз и снимаем сигнал.

Но если мы будем подавать смешанный сигнал, то есть переменный ток + постоянный ток, то на выходе мы получим просто переменный ток. В этом мы с вами уже убеждались на опыте. Почему так произошло? Да потому что конденсатор не пропускает через себя постоянный ток!

Поделитесь в социальных сетях:FacebookX
Напишите комментарий